1 ZÁKLADY TABULKOVÉHO PROCESORU

1.1 K ČEMU JE TABULKOVÝ PROCESOR

- ke tvorbě tabulek
- k řešení opakujících se početních úloh
- ke grafickému znázornění závislostí a empirických hodnot
- k jednoduchým databázovým operacím

1.2 PRACOVNÍ PLOCHA

Microsoft Excel - Sešit1										
Soubor Úpr <u>a</u> vy Zobrazit Vložit Formát <u>N</u> ástroje <u>D</u> ata <u>Okno</u> Nápo <u>v</u> ěda								×		
] 🗅	🖻 🖬 🧯	B 🖪 💖	X 🖻 🕻	l 🝼 🖂	- 🍓 Σ	f* 🛃 🚺	, 📿 😤 🛛 A	rial CE	•	» ▼
	A1 🔪	•	=		editad	ní řádek				
	Α	В	С	D	E	F 、	G	Н		
1										
2		s	ouřadnice	aktuální bu	ňky					
3	``							označe	ní sloupců	- 1
4		` buňka				mřížka				-
5										-
6										-
<u>L</u>		- označe	ní řádků							-
8-										-
10										
11										
12		záložky listi	i (ouška)							
13	4									
14										-
Přip	raven							123		1.

/ Hlavní nabídka

1.3 OPERACE SE SOUBOREM

Soubor (dokument) vytvořený v OOo.Calcu obsahuje listy. Je to soubor jako každý jiný, ukládá se i otevírá obvyklým způsobem. Výchozí formát pro ukládání souborů je .ods, je možný i export do formátu .xls pro MS Excel.

Klávesové zkratky:

- Ctrl+N Otevřít nový soubor
- Ctrl+O Otevřít existující soubor
- Ctrl+S Uložit soubor na původní místo
- Ctrl+W Zavřít soubor

1.4 POHYB PO PLOŠE, EDITACE BUNĚK

Existují 3 typy kurzorů:

- tabulkový (zarámovaná buňka)
- textový (svislá čárka v buňce, nebo editačním řádku)
- myšový (má 2 podoby: [™] a +)

Po ploše se pohybujeme pomocí **kurzorových šipek**, nebo **Home** a **End**, **Ctrl+home** a **ctrl+end** zápis do buňky potvrdíme: **Enter**, nebo **kurzorovými šipkami** editace buňky: **F2**

Označování: Tažením LT myši **Přesun**: označené buňky přesuneme tak, že je uchopíme LT myši a táhneme na nové místo. **Kopírování:** stejné jako přesun, + Ctrl. Jiný způsob je samozřejmě pomocí schránky.

Úkol: vytvořit tabulku zasedací pořádek. Nutno umět:

- slučování buněk (formát- sloučit buňky)
- měnit šířku sloupce a výšku řádku (pomocí: klik PT nad označenými řádky, sloupci, nebo u ozačených sloupců šoupat posuvníkem)
- ohraničení (tlačítko na panelu nástrojů)
- zformátovat buňku (Formát/ buňka, nebo klik PT nad buňkou + formát buňky)

1.5 DATOVÉ TYPY

Řetězec znaků, který vkládáme do buňky můžeme chtít určitým způsobem zformátovat (to aby tabulka vypadala "dobře"). Abychom to nemuseli dělat pokaždé ručně, můžeme u vybrané oblasti buněk nastavit jejich **datový typ.** Tabulkový procesor potom obsah buňky sám přepíše do formy odpovídající zadanému datovému typu.

Procesor OOo.Calc nabízí tyto formáty buněk:

Číslo	obecné zobrazení čísla				
Měna	k číslu přidá symbol měny				
Datum	pro zobrazení data				
Čas	pro zobrazení času				
Procento	vynásobí hodnotu buňky 100 a přidá symbol %				
Zlomky	desetinné číslo převede na zlomek				
vědecký	zobrazí číslo v exponenciálním tvaru				
text	obsah buňky se považuje za text, i když obsahuje číslo				
definované uživatele	m pokud žádný z nabízených formátů nevyhovuje, zadáme si vlastní				

Přístup k formátování buněk: *Formát/ buňky/ karta číslo*, nebo klik P.T. nad vybranou oblastí bunek.

Úkol: vytvořit tabulku, v níž bude 10 sloupců, každý v jiném datovém formátu, a v každém sloupci budou 4 různé příklady čísel:

Datové typy									
číslo	měna	datum	čas	procenta	zlomky	vědecký	text	Tel. Číslo	vlastní
0,01	456,50 Kč	23. leden 2004	12:23:00	1%	0,5	1,24E+06	123	123 456 789	654 654-
-0,01	-12,00 Kč	12-IV.	02:52:48	50%	0,33	2,00E+00	985	566 789 456	12-
1,66	1 563,00 Kč	23. prosinec 1999	06:23 odp.	20%	32/2	9,88E+08	7	605 152 145	456-
0,00	3,00 Kč	1. leden 2001	15:45:00	23%	3,12	3,00E-03	6	987 654 111	12 345-

1.6 VYPLŇOVÁNÍ BUNĚK ŘADOU

Při pohybu myší nad aktivní buňkou se mění zobrazení kurzoru. Po obvodu je to šipka a v pravém dolním rohu tenký křížek (výplňový úchyt). Oba druhy kurzoru nám naznačují, jakým způsobem se dá v daném okamžiku manipulovat s buňkou, nebo jejími daty pomocí myši.

Zajímavou možnost OOo.Calc nabízí, je-li kurzor ve tvaru tenkého křížku. Tažením LT myši po řádku nebo sloupci můžeme celou oblast vyplnit řadou (posloupností). Pomocí označení oblasti buněk a *Úpravy/ vyplnit …*, můžeme:

- kopírovat obsah buňky do všech buněk oblasti
- vytvořit řadu se zadáním podrobností (krok, typ (aritm., geom.), konečná hodnota)

Úkol:

Vytvořte tabulku s nadpisem Vyplňování buněk řadou, jejíž sloupce vyplníte:

- řadou čísel od -10 do 10 s krokem 1
- řadou sudých čísel od 250 do 290
- řadou dní od 28. 1. do 17. 2.
- řadou datumů posledních 20 nedělí počínaje tou poslední

Úkol: Vytvořte tabulku podle vzoru Pokladní daňový doklad. Buňky pro zadání data budou v datumovém formátu dd. mm. rrrr, buňky pro zadání ceny budou ve formátu měna (dvě desetinná místa a symbol koruny české), buňky pro zadání sazby DPH budou ve formátu procento (nula desetinných míst).

Úkol: Vytvořte nabídkový list kosmetické firmy podle vzoru Nabídka říjen 2004. Použijte typ písma Verdana, pro zobrazení ceny vytvořte vlastní formát čísla 1 564,-. Všechny buňky tabulky budou zarovnány na střed, kromě položek ve sloupci zboží. Záhlaví sloupců bude zarovnáno na střed i ve svislém směru. Řádky obsahující výrobky v akci budou podbarveny světle zelenou barvou.

2 SPRÁVA LISTŮ

Dokument v aplikaci OOo.Calc může obsahovat několik listů, proto lze uchovávat různé druhy souvisejících informací pouze v jednom souboru. Tento může mít až 255 listů, každý prázdný list má velikost asi 1 KB. **Listy:** Listy můžete použít k zobrazení a analýze dat. Můžete zadávat a upravovat data v několika listech současně a provádět výpočty založené na datech z několika listů.

Ouška listů: Názvy listů jsou zobrazeny na ouškách na spodním okraji okna dokumentu.

Úkol: Založte si nový dokument, v něm 3 listy, v každém listu vytvořte tabulku v automatickém formátu se 3 řádky a 3 sloupci a libovolnými daty. Pomocí nápovědy (můžete i intuitivně zkusmo, pomocí PT) zjistěte, jak se :

- 1. vkládá nový list
- 2. vkládá více nových listů
- 3. přesouvá list v rámci 1 dokumentu
- 4. kopíruje list v rámci 1 dokumentu
- 5. odstraňuje list
- 6. přejmenovává list
- 7. kopíruje list do jiného dokumentu

2.1 VLOŽENÍ NOVÉHO LISTU

List(y) přidáte klepnutím na příkaz *List* v nabídce *Vložit*, nebo klik PT nad ouškem listu a výběr z místní nabídky.

2.2 PŘESUN NEBO KOPÍROVÁNÍ LISTŮ

Upozornění: Při přesunu nebo kopírování listů buďte opatrní. Pokud list přesunete, mohou být výpočty nebo grafy založené na datech v listu nepřesné. Podobně, přesunete-li list mezi listy, na které odkazují odkazy ve 3D vzorcích, mohou být data v listu zahrnuta do výpočtu.

- 1. Chcete-li přesunout nebo zkopírovat listy do jiného existujícího dokumentu, otevřete tento dokument.
- Přepněte se do dokumentu obsahujícího listy, které chcete přesunout nebo zkopírovat, a potom tyto listy vyberte.
- 3. Klik PT nad ouškem označeného listu a výběr z místní nabídky, nebo v nabídce Úpravy/ list.
- 4. Pečlivě vyplníme dialogové okno

2.3 ODSTRANĚNÍ LISTŮ ZE DOKUMENTU

Vyberte listy, které chcete odstranit. Klik PT nad oušky označených listů a výběr z místní nabídky, nebo v nabídce *Upravy/ list.*

2.4 PŘEJMENOVÁNÍ LISTU

Klik PT myši a výběr z místní nabídky.

3 VÝPOČTY, VZORCE

Úkol: Vytvořte tabulku 4x4, jejíž buňky vyplníte libovolnými čísly. Při tom si zopakujte přesun a kopírování oblastí buněk.

3.1 RYCHLÉ VÝPOČTY V LISTU (ZOBRAZENÍ SOUČTU)

Chcete-li zobrazit celkovou hodnotu oblasti buněk, použijte v aplikaci OOo.Calc funkci **Automatický přepočet**. Vyberete-li buňky, zobrazí se součet oblasti ve stavovém řádku, což je vodorovná oblast pod oknem dokumentu.

Funkce Automatický přepočet slouží také k dalším automatickým výpočtům. Klepnete-li pravým tlačítkem myši na stavový řádek, zobrazí se místní nabídka. Ve vybrané oblasti můžete vypočítat *průměr* nebo vyhledat *minimální* či *maximální* hodnotu. Klepnete-li na příkaz *Počet čísel,* budou spočítány buňky obsahující číselné hodnoty. Klepnete-li na příkaz *Počet hodnot*, budou spočítány vyplněné buňky. Při každém spuštění aplikace OOo.Calc je funkce Automatický přepočet znovu nastavena na funkci SUMA.

3.2 ODKAZY NA BUŇKY A OBLASTI

Odkaz ukazuje na buňku nebo oblast buněk v listu a udává, kde má aplikace OOo.Calc hledat hodnoty nebo data, která chcete použít ve vzorci.

Pomocí odkazů můžete použít data obsažená v různých částech listu v jednom vzorci nebo hodnotu jedné buňky v několika vzorcích. Můžete také odkazovat na buňky v jiných listech stejného dokumentu.

Ve výchozím nastavení používá aplikace OOo.Calc odkazy, které odkazují na sloupce pomocí písmen (A až IV, celkem 256 sloupců) a na řádky čísly (1 až 65536). Tato písmena a čísla označují záhlaví řádků a sloupců. **Odkaz na buňku** vytvoříte zadáním písmene sloupce následovaného číslem řádku (třeba G11). Chcete-li vytvořit **odkaz na oblast buněk**, zadejte odkaz na levou horním buňku oblasti(:)odkaz na pravou dolní buňku oblasti (třeba B2:D10).

Úkol: Vypište odkazy na následující buňky: **Cíl odkazu** Buňka ve sloupci A a řádku 10 Oblast buněk ve sloupci A a řádcích 10 až 20 Oblast buněk v řádku 15 a sloupcích B až E Oblast buněk ve sloupcích A až E a řádcích 10 až 20

3.3 RELATIVNÍ A ABSOLUTNÍ ODKAZY, VZORCE

vzorec v OOo.Calcu: rovnice, ve které se levá strana nezapisuje, na pravé straně jsou zapsány operace a odkazy na buňky jejichž data se mají pro výpočet použít. Např:

= A4 + 8

a znamená to: do této buňky vlož hodnotu buňky A4 zvětšenou o 8. V tomto případě byl použit relativní odkaz na buňku A4.

Relativní odkazy: Pokud vytvoříte vzorec, jsou odkazy na buňky nebo oblasti obvykle založeny na jejich umístění vzhledem k buňce, která obsahuje daný vzorec.

na kopírování buněk se vzorci obsahujícími rel. odkazy. V kopii se odkazuje na úplně jiné buňky než v originálu

Přesun buňky se vzorcem s rel. odkazy je bez problémů, stejně tak i přesun a kopírování odkazovaných buněk.

Tentokrát byl použit absolutní odkaz na buňku \$A\$4.

Absolutní odkazy: Pokud nechcete, aby Calc upravoval odkazy při kopírování vzorce do jiné buňky, použijte absolutní odkaz.

Změna relativních odkazů na absolutní a naopak: vyberte buňku obsahující vzorec. Na řádku vzorců vyberte odkaz, který chcete změnit. **Opakovaným stisknutím kláves Shift+F4 budete přepínat** mezi kombinacemi abs. a rel odkazů.

Úkol: Zadejte si do sloupce libovolná čísla, do buňky pod nimy vložte vzorec pro součet hodnot ve sloupci a vyzkoušejte jeho přesun a kopírování.

3.4 MATEMATICKÉ OPERÁTORY VE VZORCÍCH

Operátory určují typ výpočtu, který chcete s prvky vzorce provést. Aplikaci Microsoft OOo.Calc rozeznává čtyři typy matematických operátorů: aritmetické, relační, textové a odkazovací.

Aritmetické operátory: K provádění základních matematických operací, jako je sčítání, odčítání nebo násobení, ke kombinování čísel a vytváření číselných výsledků slouží následující aritmetické operátory.

operátor	význam	příklad
+	sčítání	3+3
-	odčítání	63 - 21
*	násobení	8 * 123
/	dělení	99 / 3
%	procenta	12,00%
^	umocňování	2^5

Porovnávací operátory: Pomocí následujících operátorů můžete porovnat dvě hodnoty. Při porovnání dvou hodnot pomocí těchto operátorů je výsledkem logická hodnota PRAVDA nebo NEPRAVDA.

operátor	význam	příklad
=	je rovno	A1=B1
>	je větší než	A1>B1
<	Je menší než	A1 <b1< td=""></b1<>
>=	Je větší nebo rovno	A1>=B1
<=	Je menší nebo rovno	A1<=B1
<>	Není rovno	A1<>B1

Operátor zřetězení textu: Chcete-li spojit neboli zřetězit jeden nebo více textových řetězců tak, aby byl vytvořen jediný textový řetězec, použijte operátor "&".

operátor	význam	příklad
&	spojí dva řetězce do jednoho	"světle"& "modrý"="světlemodrý"

Referenční operátory: Chcete-li kombinovat oblasti buněk pro výpočty, použijte následující operátory.

operátor	význam	příklad	
:	rozsah oblasti	B5:B15	
;	sjednocení předchozího a následujícího odkazu	B5:B15;C12	

Úkol: Ve sdílené složce Dokumenty otevřete dokument cviceni_vypocty.ods a postupně všechny listy zkopírujte do svých dokumentů reseni_vypocty.ods. Vyřešte Cviceni_vypocty.ods list vzorce1, vzorce2, kurz a vklad.

4 FUNKCE

Funkce jsou předdefinované vzorce, které provádějí výpočty z hodnot, nazývaných argumenty, tyto se zadávají do závorky.

ROUND(A1;-2)

Databázové funkce Datové a časové funkce Inženýrské funkce Finanční funkce Informační funkce Logické funkce Matematické Statistické funkce Textové funkce Funkce sešitu

4.1 LOGICKÉ FUNKCE

Argumentem logické funkce musí být logická hodnota PRAVDA nebo NEPRAVDA. Např. v buňce A1 je číslo 100. Potom výraz A1>0 má logickou hodnotu PRAVDA. Takže výraz A1>0 můžeme použít jako argument logické funkce.

- Logický součin AND(arg1;arg2;...) Definice: Pravda, když všechny argumenty jsou pravda. Jinak nepravda.
- Negace
 NOT(arg)
 Definice: pravda, když arg je nepravda a naopak
- Logický součet
 OR(arg1;arg2;...)
 Definice: Pravda, když alespoň jeden z argumentů je pravda. Jinak nepravda.

Úkol: Cviceni_vypocty.ods list logické funkce 1

```
Rozhodování

IF(podmínka;ano;ne)

IF(A10=100;SUM(B5:B15);"")

Když obsah buňky A10 = 100, sečti buňky B5 až B15, když ne, nedělej nic.

IF(A10<=100;"v pořádku";"bohužel")

Když obsah buňky A10<=100, vypiš text "v pořádku", když ne, vypiš text "bohužel"
```

Úkol: Cviceni_vypocty.ods, list logické funkce2

4.2 ČASOVÉ A DATOVÉ FUNKCE

• TODAY()

Vrátí aktuální datum počítačového systému. Při změnách hodnot dokumentu a při jeho opětovném otevření se hodnota aktualizuje. U této funkce se nezadávají žádné argumenty.

- Aktuální rok získáme vnořením: YEAR(TODAY())
- NOW()

Vrátí aktuální datum a čas.

Úkol: Cviceni_vypocty.ods list Atletika

4.3 MATEMATICKÉ FUNKCE

- Absolutní hodnota ABS(číslo)
 Vrátí absolutní hodnotu čísla.
- Druhá odmocnina
 SQRT(číslo)
 Vrátí kladnou druhou odmocninu daného kladného čísla.
- Mocnina POWER(základ;mocnina) Vrací mocninu čísla.
- RADIANS(úhel)
 Převádí stupně na radiány. (Úhel je úhel, který chcete převést, ve stupních.)
- Součet SUM(číslo1;číslo2;...) Sečte všechna čísla v oblasti buněk.

Zaokrouhlování

ROUND(Číslo;Počet) Zaokrouhluje číslo na určitý počet desetinných míst podle platných matematických kritérií. Číslo: Číslo, které má být zaokrouhleno. Počet: (volitelné) Počet desetinných míst, na který chcete číslo zaokrouhlit. Pokud je parametr Počet záporný, budou zaokrouhleny číslice před desetinnou čárkou.

- Sinus
 - SIN(číslo)

Číslo je úhel v radiánech, jehož sinus chcete zjistit. Pokud je dané číslo ve stupních, pak jeho vynásobením hodnotou PI()/180 dostanete velikost úhlu v radiánech.

• Kosinus

COS(číslo) Číslo je úhel v radiánech

 Celá část čísla INT(číslo)

Zaokrouhlí číslo dolů na nejbližší celé číslo.

• PI()

Vrátí číslo 3,14159265358979, matematickou konstantu pí

Náhodné číslo RAND()

Vrátí rovnoměrně rozložená náhodná čísla větší nebo rovna 0 a menší než 1.

Úkol: Cviceni_vypocty.ods list Mat.fce 1

4.4 STATISTICKÉ FUNKCE

• MAX(číslo1;číslo2;...)

Vrátí maximální hodnotu z daného seznamu argumentů. Číslo1, číslo2, ... je 1 až 30 čísel, mezi nimiž chcete nalézt maximální hodnotu.

- MIN(číslo1;číslo2;...)
 Vrátí minimální hodnotu v množině hodnot.
 Číslo1, číslo2, ... je 1 až 30 čísel, mezi kterými chcete najít minimální hodnotu.
- MODE(číslo1;číslo2;...)

Vrátí nejčastěji se vyskytující hodnotu v souboru dat. Pokud se v souboru vyskytuje několik hodnot se stejnou četností výskytu, vrátí nejmenší z nich. Jestliže se ani jedna hodnota nevyskytuje v souboru alespoň dvakrát, dojde k chybě.

- COUNTIF(oblast;kritérium) (pozor, funkce je zařazena mezi matematické funkce) Spočítá buňky v oblasti, které odpovídají zadaným kritériím. Oblast je oblast buněk, ve které chcete spočítat buňky. Kritérium: určuje, které buňky budou spočteny. Vyhledávací kritérium může být například zadáno v podobě 17, "17", ">100" nebo modrá. Hledaný text můžete zadat také pomocí zástupných znaků, například v podobě "m.*" pro všechna slova začínající písmenem m. Můžete také označit oblast buněk, která kritéria vyhledávání obsahuje.
- AVERAGE(číslo1;číslo2;...)
 Vrátí aritmetický průměr argumentů.
 Číslo1, číslo2, ... je 1 až 30 číselných argumentů, jejichž průměr chcete zjistit.
- RANK(Hodnota;Data;Typ) Vrátí pořadí hodnoty ve výběru.
 Hodnota: Hodnota, u které se má zjistit pořadí.
 Data: Pole datových hodnot výběru.
 Typ: (volitelné) Řazení. 0 znamená vzestupné řazení, 1 znamená sestupné řazení.

Úkol: Cviceni_vypocty.ods list Statistika

4.5 FUNKCE SEŠITU

Užitečnou funkcí sešitu je vyhledávací funkce:

VLOOKUP(Kritérium vyhledávání;Pole;Index;Pořadí třídění)

Umožňuje vertikální vyhledávání s odkazem na buňky sousedící vpravo. Ověří, zda první sloupec matice obsahuje zadanou hodnotu a vrátí hodnotu obsaženou ve stejném řádku matice v zadaném sloupci.

Kritérium vyhledávání: Hodnota vyhledávaná v prvním sloupci matice.

Pole: Odkaz obsahující alespoň dva sloupce.

Index: Číslo sloupce v matici, který obsahuje hodnotu, která má být vrácena. První sloupec matice je označen číslem 1.

Pořadí třídění: (volitelné) Umožňuje zadat, jestli je první sloupec vzestupně seřazen (výchozí nastavení). Pokud první sloupec vzestupně seřazen není, zadejte logickou hodnotu NEPRAVDA. Seřazené sloupce lze prohledávat mnohem rychleji a funkce vrátí hodnotu i tehdy, pokud nebude vyhledávaná hodnota nalezena přesně, ale bude se nacházet mezi nejnižší a nejvyšší hodnotou zadanou v seznamu. V neseřazených seznamech musí být vyhledávaná hodnota nalezena přesně.

5 GRAFY

5.1 VYTVOŘENÍ GRAFU POMOCÍ PRŮVODCE

Vložit/ graf

a pak pečlivě vyplníme dialogová okna průvodce. Chceme-li upravit již vytvořený graf, přesným dvojklikem LT na objekt grafu spustíme dialogová okna pro podrobnou úpravu.

Úkol: Cviceni vypocty.ods list graf 1, graf2

6 DATABÁZOVÉ OBLASTI

Databázová oblast v OOo.Calcu znamená tabulku (oblast buněk), v níž spolu souvisejí jednotlivé údaje v buňkách na jednom řádku.

V aplikaci OOo.Calc můžete snadno (tím pádem i s omezením) používat tabulku jako databázi. To se může hodit v případě, že data v tabulce chcete řadit nebo filtrovat. Jeden řádek databázové oblasti se nazývá záznam.

6.1 VYTVOŘENÍ DATABÁZOVÉ OBLASTI

Nejdříve musíme aplikaci OOO.Calc sdělit, že tabulku má považovat za databázovou oblast a ne jen za obyčejnou tabulku:

Oblast buněk označíme, pak Data/ Definovat oblast

6.2 PŘIDÁVÁNÍ DAT DO DATABÁZOVÉ OBLASTI

Pokračujeme v zápisu záznamů do tabulky. Mazání záznamu je stejné jako odstraňování řádku.

6.3 ŘAZENÍ

Znamená celou databázovou oblast seřadit alfanumericky. Přístup k funkci: Data/ řadit, zde můžeme nastavit podrobnosti řazení.

6.4 FILTROVÁNÍ

Znamená zobrazení podmnožiny databázové oblasti splňující zadané podmínky.

Přístup k funkci: Data/ automatický filtr. Poté se objeví šipečky v popiskách sloupců databázové oblasti a kliknutím na ně můžeme filtrovat.

Pro filtrování dat podle složitějších podmínek (např. všichni Nováci, kteří pracují ve firmě déle než 5 let, nebo všechny Terezy a Lucie...) použijeme standartní filtr: Data/ standartní filtr.

Úkol: Cviceni vypocty.ods list Statistika

7 ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ

Při měření fyz. veličin dělá experimentátor vždy chyby a to trojího druhu:

- 1. systematické vznikají nedokonalostí měřidel, nevhodností použitých metod...
- 2. hrubé chyby vznikají nepozorností či omylem experimentátora
- 3. náhodné chyby vznikají působením náhodných vlivů

Jak z měření odstranit tyto chyby?

- 1. systematické odstraníme výběrem přesnějších měřidel, změnou měřicí metody...
- hrubé chyby lehce rozeznáme (dost se od ostatních naměřených údajů liší) a z naměřených údajů je prostě vyškrtneme
- náhodné chyby odstranit nelze, ale použitím vhodných statistických metod je můžeme s dostatečnou přesností vyčíslit. Musíme k tomu provést měření jedné veličiny opakovaně, čím vícekrát, tím spolehlivější bude výsledek měření.

Postup při měření:

- 1. Měření opakujeme (n krát) a zapisujeme do tabulky (a_i i=tá naměřená hodnota)
- 2. Vyškrtáme hrubé chyby

3. Z naměřených hodnot spočítáme aritmetický průměr $\bar{a} = \frac{1}{n}(a_1 + a_2 + ... + a_n)$

4. Určíme odchylku měření :

průměrnou:
$$\Delta a = \frac{1}{n} (|\bar{a} - a_1| + |\bar{a} - a_2| + ... + |\bar{a} - a_n|)$$

nebo směrodatnou: $\sigma = \sqrt{(\frac{1}{n}(\bar{a} - a_1)^2 + (\bar{a} - a_2)^2 + ... + (\bar{a} - a_n)^2)}$

- 5. Odchylku zaokrouhlíme na 1 platnou číslici, aritmetický průměr zaokrouhlíme na stejný počet desetinných míst, jako má odchylka.
- 6. Určíme relativní odchylku měření:

z průměrné:
$$\delta a = \frac{\Delta a}{\overline{a}}$$

nebo směrodatné: $\delta a = \frac{\sigma}{\overline{a}}$

prevedeme na procenta.

7. Zapíšeme výsledek ve tvaru: $a = (\bar{a} \mp \sigma) jednotek$

Posoudíme přesnost měření podle relativní odchylky (v laboratorních cvičení použijeme relativní odchylku počítanou ze směrodatné odchylky). Laboratorní měření je dostatečně přesné, je-li relativní odchylka < 1%.

Užitečné funkce v Calcu:

aritmetický průměr: **AVERAGE()** průměrná odchylka: **AVEDEV()** směrodatná odchylka: **STDEVP()**